

- **1.** Идеальный газ массой m = 6.0 кг находится в баллоне вместимостью V = 5.0 3 . Если средняя квадратичная скорость молекул газа $\langle v_{\text{KB}} \rangle = 700 \text{ м/c}$, то его давление р на стенки баллона равно:
 - 1) 0,2 MΠa 2) 0.4 MΠa
- 3) 0,6 MΠa
- 4) 0.8 MΠa
- 5) 1.0 MΠa
- **2.** Число N_1 атомов титана $\left(M_1=48\ rac{\Gamma}{_{
 m MOJTh}}
 ight)$ имеет массу $m_1=2\ \Gamma,\,N_2$ атомов углерода $\left(M_2=12\ \frac{\Gamma}{MOJIb}\right)$ имеет массу $m_2=1\ \Gamma$. Отношение $\frac{N_1}{N_2}$ равно:
 - 1) $\frac{1}{4}$ 2) $\frac{1}{2}$ 3) 1 4) 2 5) 4
- **3.** Число N_1 атомов лития $\left(M_1 = 7 \frac{\Gamma}{MOTI}\right)$ имеет массу $m_1 = 4$ г, N_2 атомов кремния $\left(M_2 = 28 \frac{\Gamma}{MOJIE}\right)$ имеет массу $m_2 = 1$ г. Отношение $\frac{N_1}{N_2}$ равно:
 - 1) $\frac{1}{16}$ 2) $\frac{1}{4}$ 3) 1 4) 4 5) 16
- **4.** Число N_1 атомов углерода $\left(M_1=12\ rac{\Gamma}{_{
 m MO,Tb}}
 ight)$ имеет массу $m_1=4\ \Gamma,\,N_2$ атомов магния $\left(M_2=24 \frac{\Gamma}{MOJIS}\right)$ имеет массу $m_2=1$ г. Отношение $\frac{N_1}{N_2}$ равно:
 - 1) $\frac{1}{9}$ 2) $\frac{1}{4}$ 3) 1 4) 4 5) 8
- 5. Число N_1 атомов железа $\left(M_1=56\ rac{\Gamma}{
 m MOJIb}
 ight)$ имеет массу $m_1=4\ \Gamma,\ N_2$ атомов лития $\left(M_2=7\ rac{\Gamma}{_{\mathrm{MOJTF}}}\right)$ имеет массу $m_2=1$ г. Отношение $rac{N_1}{N_2}$ равно:
 - 1) $\frac{1}{4}$ 2) $\frac{1}{2}$ 3) 1 4) 2 5) 4
- **6.** Число N_1 атомов лития $\left(M_1=7\ \frac{\Gamma}{\text{МОЛЬ}}\right)$ имеет массу $m_1=1\ \Gamma,\ N_2$ атомов кремния $\left(M_2=28\ \frac{\Gamma}{_{
 m MOJIb}}\right)$ имеет массу $m_2=4\ \Gamma.$ Отношение $\frac{N_1}{N_2}$ равно:
 - 1) $\frac{1}{4}$ 2) $\frac{1}{2}$ 3) 1 4) 2 5) 4

- 7. В герметично закрытом сосуде находится идеальный газ, давление которого p = $1,0\cdot10^5$ Па. Если средняя квадратичная скорость поступательного движения молекул газа $\langle v_{\kappa \rho} \rangle = 500$ м/с,то плотность р газа равна:
 - 1) 0.40 kg/m^3 2) 0.60 kg/m^3 3) 0.75 kg/m^3 4) 0.83 kg/m^3 5) 1.2 κΓ/ M^3
- 8. В герметично закрытом сосуде находится идеальный газ, давление которого $p = 1,32 \cdot 10^5$ Па. Если плотность газа $\rho = 1,10$ кг/м³, то средняя квадратичная скорость < ∪кв > поступательного движения молекул газа равна:
 - 1) 200 m/c
- 2) 220 m/c
- 3) 500 m/c
- 4) 600 m/c
- 5) 660 m/c
- **9.** В герметично закрытом сосуде находится идеальный газ, давление которого p = 10,48:10⁵ Па. Если средняя квадратичная скорость поступательного движения молекул газа $< v_{KB} > = 400$ м/с,то плотность ρ газа равна:
 - 1) 0.10 kg/m^3 2) 0.30 kg/m^3 3) 0.36 kg/m^3 4) 0.90 kg/m^3 5) 1.1 kg/m^3
- **10.** На графике в координатах (p, V) представлен процесс $1 \rightarrow 2$ в идеальном газе, количество вещества которого постоянно. В координатах (p, T) этому процессу соответствует график, обозначенный буквой:

- 1) A 2) Б 3) B **4)** Γ 万
- 11. Если концентрация молекул идеального газа $n = 2.0 \cdot 10^{25} \text{ м}^{-3}$, а средняя кинетическая энергия поступательного движения молекул газа $\langle E_{\kappa} \rangle = 3,0 \cdot 10^{-21}$ Дж, то давление р газа равно:
 - 1) 45 k∏a
- 2) 40 κΠa
- 3) 20 κΠa
- 4) 15 κΠα
- 5) 10 κΠα
- **12.** Если давление идеального газа p = 2.0 кПа, а средняя кинетическая энергия поступательного движения молекул газа $\langle E_{\rm k} \rangle = 1.5 \cdot 10^{-20}$ Дж, то концентрация n молекул
 - 1) $1.0 \cdot 10^{23} \text{ m}^{-3}$ 2) $1.5 \cdot 10^{23} \text{ m}^{-3}$ 3) $2.0 \cdot 10^{23} \text{ m}^{-3}$

4)
$$1.5 \cdot 10^{23} \text{ m}^{-3}$$
 5) $3.0 \cdot 10^{23} \text{ m}^{-3}$

13. Если в объёме $V=1.0~{\rm дm}^3$ некоторого вещества ($M=56~{\rm г/моль}$) содержится $N=8.4\cdot 10^{25}$ молекул, то плотность ρ этого вещества равна:

1) 1,0
$$\Gamma/\text{cm}^3$$
 2) 2,7 Γ/cm^3 3) 5,6 Γ/cm^3 4) 7,8 Γ/cm^3 5) 8,7 Γ/cm^3

14. Число молекул $N=1,7\cdot 10^{26}$ некоторого вещества ($\rho=8,9$ г/см³, M=64 г/моль) занимает объем V. равный:

1)
$$0.50 \text{ дм}^3$$
 2) 1.0 дм^3 3) 1.5 дм^3 4) 2.0 дм^3 5) 3.0 дм^3

15. Сосуд вместимостью V=1,0 дм³ полностью заполнен водой ($\rho=1,0$ г/см³, M=18 г/моль). Число N молекул воды в сосуде равно:

1)
$$1,8 \cdot 10^{25}$$
 2) $2,3 \cdot 10^{25}$ 3) $3,3 \cdot 10^{25}$ 4) $3,6 \cdot 10^{25}$ 5) $6,0 \cdot 10^{25}$

16. Если давление p_0 насыщенного водяного пара при некоторой температуре больше парциального давления p водяного пара в воздухе при этой же температуре в n=3,1 раза, то относительная влажность φ воздуха равна:

17. В баллоне находится смесь газов: аргон $(M_1=40\ \frac{\Gamma}{\text{МОЛЬ}})$ и кислород ($M_2=32\ \frac{\Gamma}{\text{МОЛЬ}}$). Если парциальное давление аргона в три раза больше парциального давления кислорода, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{МОЛЬ}}$.

18. В баллоне находится смесь газов: водяной пар $(M_1=18\ \frac{\Gamma}{\text{МОЛЬ}})$ и азот ($M_2=28\ \frac{\Gamma}{\text{МОЛЬ}}$). Если парциальное давление водяного пара в четыре раза больше парциального давления азота, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{МОЛЬ}}$.

19. В баллоне находится смесь газов: неон $(M_1=20\ \frac{\Gamma}{\text{моль}})$ и аргон ($M_2=40\ \frac{\Gamma}{\text{моль}}$). Если парциальное давление неона в три раза больше парциального давления аргона, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{моль}}$.

20. В баллоне находится смесь газов: углекислый газ ($M_1=44$ $\frac{\Gamma}{\text{МОЛЬ}}$) и водород ($M_2=2,0$ $\frac{\Gamma}{\text{МОЛЬ}}$). Если парциальное давление углекислого газа в два раза больше парциального давления водорода, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{МОЛЬ}}$.

21. В баллоне находится смесь газов: углекислый газ ($M_1=44$ $\frac{\Gamma}{\text{моль}}$) и кислород ($M_2=32$ $\frac{\Gamma}{\text{моль}}$). Если парциальное давление углекислого газа в три раза больше парциального давления кислорода, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{моль}}$.

22. При нагревании одноатомного идеального газа средняя квадратичная скорость теплового движения его молекул увеличилась в n=1,20 раза. Если начальная температура газа была $t_1=-14$ °C, то конечная температура t_2 газа равна ... °C. Ответ округлите до целого числа.

23. При температуре $t_1=-5$ °C средняя квадратичная скорость поступательного движения молекул идеального газа $<v_{\rm KB1}>=200$ м/с. Молекулы этого газа имеют среднюю квадратичную скорость $<v_{\rm KB2}>=280$ м/с при температуре t_2 газа, равной ... °C. Ответ округлите до целого числа.

24. При температуре $t_1=27$ °C средняя квадратичная скорость поступательного движения молекул идеального газа $<v_{\rm KB1}>=354$ м/с. При температуре $t_2=227$ °C молекулы этого газа имеют среднюю квадратичную скорость $<v_{\rm KB2}>$, равную ... м/с. Ответ округлите до целого числа.

25. В закрытом сосуде вместимостью $V=1,00~{\rm cm}^3$ находится $N=3,80\cdot 10^{20}$ молекул идеального газа при давлении $p=536~{\rm k\Pi a}$. Если молярная масса газа $M=32,0\frac{\Gamma}{{\rm MOJIb}}$, то средняя квадратичная скорость $\langle \upsilon_{\rm KB} \rangle$ поступательного движения молекул этого газа равна... $\frac{\rm M}{\rm C}$. (Число Авогадро — $6,02\cdot 10^{23}~{\rm MOJb}^{-1}$.)

26. Если идеальный газ, количество вещества которого постоянно, изохорно нагрели от температуры $t_1 = -33$ °C до температуры $t_2 = 147$ °C, то модуль относительного изменения давления газа $\left| \frac{\Delta p}{p_1} \right|$ равен... %.

- 27. Почва считается загрязнённой кадмием, если в одном килограмме почвы содержится больше чем $N_0 = 5.4 \cdot 10^{18}$ атомов кадмия. В одном аккумуляторе типа AA находится $N_1 = 3.2 \cdot 10^{22}$ атомов кадмия. Если весь кадмий из аккумулятора попадёт в почву, то максимальная масса m загрязнённой почвы будет равна:

 - 1) 0,17 T 2) 0,59 T 3) 5,9 T 4) 17 T 5) 59 T